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Abstract

Using deformation theory, Braverman and Joseph constructed certain primitive ideals in the enveloping algebras of the simple
Lie algebras. Except in the case sl(2,C), there is a special value of the deformation parameter giving an ideal of infinite
codimension. For the classical Lie algebras, the uniqueness of the special value is equivalent to the existence of tensors with
very particular properties. The existence of these tensors was concluded abstractly by Braverman and Joseph but here we present
explicit formulae. This allows a rather direct computation of the special value of the deformation parameter.
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1. Introduction

Let g be a simple complex Lie algebra. Let g } g denote the Cartan product of g with itself, namely the unique
irreducible component of g ⊗ g whose highest weight is twice the highest weight of g itself. Also, let us denote by

g ⊗ g 3 X ⊗ Y 7−→ X } Y ∈ g } g ⊂ g ⊗ g

the invariant projection onto the Cartan product. Let [X, Y ] denote the Lie bracket and 〈X, Y 〉 the Killing form on g.
Then in the full tensor algebra

⊗
g let us consider the two-sided ideal Iλ generated by elements of the form

X ⊗ Y − X } Y −
1
2
[X, Y ] − λ〈X, Y 〉 ∈

⊗2
g ⊕ g ⊕ C, ∀X, Y ∈ g. (1.1)
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Let us denote by Aλ the quotient algebra
⊗

g/Iλ. The following theorem was proved by Braverman and Joseph [2]
based on earlier work of Joseph [7] and Braverman and Gaitsgory [1].

Theorem 1.1. For each complex simple Lie algebra not isomorphic to sl(2, C), there is precisely one value of λ for
which Aλ is infinite-dimensional.

The relations (1.1) imply that the ideals Iλ descend to corresponding ideals Īλ in U(g), the universal enveloping
algebra of g. In this context, with the special linear series of Lie algebras excluded, the ideals Īλ are the Joseph
ideals [7]. To prove that, for all λ save for a special value, the ideal is of finite codimension, Braverman and Joseph [2]
present an abstract argument, which they make explicit for the symplectic and special linear algebras. They remark,
however, that ‘in general such verification seems very difficult’. This is what we accomplish for the orthogonal
algebras. For completeness and convenience, we also present the special tensors that may be used in direct proofs
of the symplectic and special linear cases.

In Sections 2–4 we present the tensors that enable us to list, in Theorem 5.5, the special values of λ in order that
Aλ might be infinite-dimensional. That Aλ is, indeed, infinite-dimensional for these special values can sometimes be
established by explicit construction. This was done in [3] for the orthogonal algebras and in Section 5 we do it for
the special linear series. Braverman and Joseph [2] instead base the existence of these infinite-dimensional algebras
upon [1].

The first author would like to thank Nolan Wallach for drawing his attention to the Joseph ideal in response to a
talk given at the University of California, San Diego, on higher symmetries of the Laplacian [3].

2. The orthogonal case

We shall use index conventions for tensors as is standard in differential geometry. More precisely, we use the
abstract index notation of Penrose [8]. For example V a will denote an element in Cn viewed as the defining
representation of so(n, C). A skew tensor, i.e. an element of Λ2Cn , will be denoted by V ab such that V ab

= −V ba .
Also gab will denote the non-degenerate quadratic form preserved by so(n, C) and gab its inverse. We shall ‘raise
and lower’ indices without comment: so Xa

= gab Xb and Xa = gab Xb where a repeated index denotes the invariant
pairing between vectors and covectors. The mapping Xa

7→ Xa is just the canonical isomorphism between the defining
representation and its dual. Finally, the adjoint representation on so(n, C) is realised as V a

b where V ab is skew.

Theorem 2.1. For λ 6= −
n−4

4(n−1)(n−2)
and n ≥ 5, the two-sided ideal in

⊗
so(n, C) generated by

X ⊗ Y − X } Y −
1
2
[X, Y ] − λ〈X, Y 〉, for X, Y ∈ so(n, C)

contains so(n, C), the first graded piece of
⊗

so(n, C).

Proof. The ideal is generated by tensors of the form

V abcd
− (}V )abcd

−
1
2
(V a

b
bd

− V d
b

ba
) + λ(n − 2)V ab

ab for V abcd
= −V bacd

= −V abdc,

where (}V )abcd denotes the Cartan part of V abcd . (There is, of course, an explicit formula for (}V )abcd but we shall
not need all of it.) Consider the following tensor:

Sabcde f
= 2ga f gbeT cd

− 2gaegb f T cd
− 2gc f gdeT ab

+ 2gcegd f T ab
+ gacgbeT d f

− gbcgaeT d f
− gad gbeT c f

+ gbd gaeT c f
− gacgb f T de

+ gbcga f T de

+ gad gb f T ce
− gbd ga f T ce

− gacgdeT b f
+ gad gceT b f

+ gbcgdeT a f

− gbd gceT a f
+ gacgd f T be

− gad gc f T be
− gbcgd f T ae

+ gbd gc f T ae,

for T ab
= −T ba . It is immediate that Sabcde f

= −Scdabe f and readily verified that

Zabcde f
≡

1
3
(Sabcde f

+ Sabe f cd) +
1
6
(Sabced f

− Sabdec f
− Sabc f de

+ Sabd f ce)
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is given by

Zabcde f
= 2gcegd f T ab

− 2gdegc f T ab
−

1
2

gacgdeT b f
+

1
2

gad gceT b f
+

1
2

gbcgdeT a f
−

1
2

gbd gceT a f

+
1
2

gacgd f T be
−

1
2

gad gc f T be
−

1
2

gbcgd f T ae
+

1
2

gbd gc f T ae
−

1
2

gaegc f T bd
+

1
2

gaegd f T bc

+
1
2

gbegc f T ad
−

1
2

gbegd f T ac
+

1
2

ga f gceT bd
−

1
2

ga f gdeT bc
−

1
2

gb f gceT ad
+

1
2

gb f gdeT ac.

Generally, Sabcde f
7→ Zabcde f is the formula for the sl(n, C)-invariant projection

⊗ ⊗ −→ ⊗ .

In this case, however, the result is manifestly pure trace in cde f . It follows that under the further so(n, C)-invariant
projection

⊗ ⊗ −→ ⊗ −→ ⊗
◦

where ◦ denotes the trace-free part, the tensor Sabcde f maps to zero. But, for n ≥ 5, this is the Cartan part in cde f . Its
skew symmetry Sabcde f

= −Scdabe f ensures that the Cartan part is also zero with respect to abcd . Therefore, we may
immediately reduce Sabcde f in two different ways with respect to the given ideal. We obtain, after a short calculation,

Sa
b

bde f
= (n − 4)[ga f T de

− gaeT d f
+ gdeT a f

− gd f T ae
],

which is skew in ad . Therefore Sab
ab

cd
= 0 and

Sabcde f
'

1
2
(Sa

b
bde f

− Sd
b

bae f
) = (n − 4)[ga f T de

− gaeT d f
+ gdeT a f

− gd f T ae
].

Tracing over de now gives

ga f T de
− gaeT d f

+ gdeT a f
− gd f T ae

' (n − 2)T a f .

Altogether,

Sabcde f
' (n − 2)(n − 4)T a f . (2.1)

On the other hand,

Sabc
d

d f
= −ga f T bc

+ gb f T ac
− 2(n − 2)gc f T ab

− (n − 3)gacT b f
+ (n − 3)gbcT a f

so

Sabc
d

d f
− Sab f

d
dc

= −(n − 4)[gacT b f
− gbcT a f

− ga f T bc
+ gb f T ac

]

and

Sabcd
cd = 2(n − 1)(n − 2)T ab.

Therefore,

Sabcde f
' −

n − 4
2

[gacT b f
− gbcT a f

− ga f T bc
+ gb f T ac

] − 2λ(n − 1)(n − 2)2T a f .

But tracing over bc gives

gacT b f
− gbcT a f

− ga f T bc
+ gb f T ac

' −(n − 2)T a f

and so

Sabcde f
' (n − 2)

[
n − 4

2
− 2λ(n − 1)(n − 2)

]
T a f . (2.2)
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Comparing (2.1) with (2.2), we conclude that T ab must be in the ideal unless we have λ = −
n−4

4(n−1)(n−2)
. This is

exactly what we wanted to prove. �

3. The symplectic case

Theorem 3.1. For λ 6= −
1

16(n+1)
and n ≥ 2, the two-sided ideal in

⊗
sp(2n, C) generated by

X ⊗ Y − X } Y −
1
2
[X, Y ] − λ〈X, Y 〉, for X, Y ∈ sp(2n, C)

contains sp(2n, C), the first graded piece of
⊗

sp(2n, C).

Proof. Let ωab denote the skew form preserved by sp(2n, C) and adopt the convention that ωacωbc is the identity. In
particular ωabωab = 2n. If we use ωab to lower indices according to Xb = Xaωab, then we may identify sp(2n, C)

as symmetric tensors T ab
= T ab and the ideal is generated by

V abcd
− (}V )abcd

−
1
2
(V a

b
bd

+ V d
b

ba
) + 2λ(n + 1)V ab

ab for V abcd
= V bacd

= V abdc.

Now consider the tensor

Sabcde f
= 4ωa f ωbeT cd

+ 4ωaeωb f T cd
− 4ωc f ωdeT ab

− 4ωceωd f T ab
− ωacωbeT d f

− ωbcωaeT d f
− ωadωbeT c f

− ωbdωaeT c f
− ωacωb f T de

− ωbcωa f T de

− ωadωb f T ce
− ωbdωa f T ce

− ωacωdeT b f
− ωadωceT b f

− ωbcωdeT a f

− ωbdωceT a f
− ωacωd f T be

− ωadωc f T be
− ωbcωd f T ae

− ωbdωc f T ae,

for T ab
= T ba . It is immediate that Sabcde f

= −Scdabe f and readily verified that

Zabcde f
≡

1
6
(Sabcde f

+ Sabde f d
+ Sabc f de

+ Sab f edc
+ Sabed f c

+ Sabd f ec)

vanishes. This is already the Cartan part with respect to the cde f indices. Therefore, we may reduce Sabdce f modulo
the ideal in two different ways. We obtain

Sabcde f
' −2(n − 1)(ωaeT d f

+ ωdeT a f
+ ωa f T de

+ ωd f T ae) ' −4(n − 1)(n + 1)T a f

or

Sabcde f
' −(n − 1)(ωacT b f

+ ωbcT a f
+ ωa f T bc

+ ωb f T ac) + 32λ(n − 1)(n + 1)2T a f

' −2(n − 1)(n + 1)T a f
+ 32λ(n − 1)(n + 1)2T a f .

Comparing these two reductions, we see that T ab lies in the ideal unless λ = −
1

16(n+1)
. This is what we wanted to

prove. �

Note that the critical value of λ for sp(4, C) ∼= so(5, C) may be computed either from Theorem 2.1 or Theorem 3.1.
Its common value is −1/48.

4. The special linear case

Theorem 4.1. For λ 6= −
1

8(n+1)
and n ≥ 3, the two-sided ideal in

⊗
sl(n, C) generated by

X ⊗ Y − X } Y −
1
2
[X, Y ] − λ〈X, Y 〉, for X, Y ∈ sl(n, C)

contains sl(n, C), the first graded piece of
⊗

sl(n, C).

Proof. If we identify sl(n, C) with trace-free tensors T a
b in the usual manner, then the ideal is generated by tensors

of the form

V a
b

c
d − (}V )a

b
c

d −
1
2
(V a

b
b

d − V b
d

a
b) − 2λn V a

b
b

a for V a
a

c
d = 0 = V a

b
c

c . (4.1)
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Consider the tensor

Sa
b

c
d

e
f = δe

dδc
f T a

b −
1
n
δc

dδe
f T a

b − δe
bδ

a
f T c

d +
1
n
δa

bδ
e

f T c
d

+ δa
dδe

bT c
f −

1
n
δa

dδe
f T c

b − δc
bδ

e
d T a

f +
1
n
δc

bδ
e

f T a
d

for T a
a = 0. It is immediate that Sa

b
c

d
e

f = − Sc
d

a
b

e
f . In particular, the Cartan part of Sa

b
c

d
e

f with respect to the
indices abcd vanishes. Hence, we may use (4.1) to reduce Sa

b
c

d
e

f modulo the given ideal. We obtain

Sa
b

c
d

e
f ' −(n − 1)δe

d T a
f − δa

f T e
d + δa

d T e
f + δe

f T a
d ' −

1
2

n(n − 2)T a
f .

On the other hand, it is readily verified that

Za
b

c
d

e
f ≡

1
4
(Sa

b
c

d
e

f + Sa
b

e
d

c
f + Sa

b
c

f
e

d + Sa
b

e
f

c
d)

is given by

Za
b

c
d

e
f =

1
2
δe

dδc
f T a

b −
1
4
δc

bδ
e

d T a
f −

1
2n

δc
dδe

f T a
b +

1
4n

δa
bδ

e
f T c

d −
1

4n
δa

dδe
f T c

b

+
1

4n
δc

bδ
e

f T a
d −

1
4
δe

bδ
c

f T a
d −

1
4n

δc
dδa

f T e
b +

1
4n

δa
bδ

e
d T c

f +
1

4n
δa

bδ
c

f T e
d

+
1

4n
δc

dδe
bT a

f −
1

2n
δc

f δ
e

d T a
b +

1
4n

δa
bδ

c
d T e

f −
1

4n
δa

f δ
e

d T c
b +

1
4n

δc
bδ

e
d T a

f

−
1

4n
δa

dδc
f T e

b +
1

4n
δe

bδ
c

f T a
d +

1
2
δe

f δ
c

d T a
b −

1
4
δc

bδ
e

f T a
d −

1
4
δe

bδ
c

d T a
f .

Generally, Sa
b

c
d

e
f 7→ Za

b
c

d
e

f followed by the removal of all traces in the cde f indices is the Cartan projection in
these indices. In this case, however, Za

b
c

d
e

f is manifestly pure trace and so this Cartan part of Sa
b

c
d

e
f vanishes.

This allows us to use (4.1) with respect to the cde f indices to conclude that

Sa
b

c
d

e
f '

1
2
(δc

f T a
b − (n − 1)δc

bT a
f + δa

bT c
f − δa

f T c
b) + 2λn(n − 2)(n + 1)T a

f

' −
1
4

n(n − 2)T a
f + 2λn(n − 2)(n + 1)T a

f .

Comparing this with our previous reduction, we see that T a
b lies in the ideal unless λ = −

1
8(n+1)

. This is what we
wanted to prove. �

Note that the critical value of λ for sl(4, C) ∼= so(6, C) may be computed either from Theorem 2.1 or from
Theorem 4.1. Its common value is −1/40.

5. Remarks and conclusions

We should explain how the special tensors used in the proofs of Theorems 2.1, 3.1 and 4.1 arise. For all simple Lie
algebras other than the special linear series, there is a common source as follows. Let g denote a complex simple Lie
algebra and let Φ denote the composition

Λ2g ⊗ g ↪→ g ⊗ g ⊗ g
Id ⊗ }
−−−−−→ g ⊗ }2g.

Braverman and Joseph [2] observe that the following is true.

Theorem 5.1. For any simple complex Lie algebra g not isomorphic to sl(n, C),

dim Homg(g,Λ2g ⊗ g) = 2 and dim Homg(g, g ⊗ }2 g) = 1.

Proof. A case-by-case verification using, for example, Klimyk’s formula. �
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Corollary 5.2. For any simple complex Lie algebra g not isomorphic to sl(n, C),

dim Homg(g, ker Φ) ≥ 1.

This result is used abstractly by Braverman and Joseph [2] and our proofs are very much motivated by this approach:
in proving Theorems 2.1 and 3.1 we find explicit non-zero homomorphisms g → ker Φ. In fact, it is easily verified
that Homg(g, ker Φ) is one-dimensional so our homomorphisms are unique up to scale.

For the special linear algebras the dimensions are different:

Theorem 5.3. For g = sl(n, C),

dim Homg(g,Λ2g ⊗ g) =

{
4 if n ≥ 3
1 if n = 2 and dim Homg(g, g ⊗ }2 g) = 1, ∀n ≥ 2.

Corollary 5.4. For g = sl(n, C) with n ≥ 3,

dim Homg(g, ker Φ) ≥ 3.

In fact, using tensors, we have checked that Homg(g, ker Φ) is three-dimensional and within it there is a two-
dimensional subspace Homg(g, ker Φ ∩ ker Ψ) where Ψ is the composition

Λ2g ⊗ g ↪→ g ⊗ g ⊗ g
Id ⊗〈 , 〉

−−−−−→ g ⊗ C = g.

Any homomorphism in Homg(g, ker Φ) \ Homg(g, ker Φ ∩ ker Ψ) will suffice for deriving the critical value of λ as
in our proof of Theorem 4.1. This critical value of λ is also obtained by Braverman and Joseph [2, Sections 7.4 and
7.7]. They also remark [2, Section 5.4] that the symplectic case may be dealt with by an ‘extremely rare’ but ‘simple-
minded procedure’ going back to Dirac. From the tensorial point of view, the reason for this is that if one naı̈vely
extends a tensor

S ∈

(
Λ2sp(2m, C) ⊗ sp(2m, C)

)
∩

(
sp(2m, C) ⊗ }2 sp(2m, C)

)
by adding zero components then one obtains a tensor in(

Λ2sp(2n, C) ⊗ sp(2n, C)
)

∩

(
sp(2n, C) ⊗ }2 sp(2n, C)

)
for any n > m. In effect, Braverman and Joseph use this observation and an explicit tensor for the case n = 2 to obtain
the general case.

Usually, Theorem 1.1 is stated in terms of the universal enveloping algebra U(g) of g. To do this, notice that the
generators (1.1) of Iλ may be split into skew and symmetric parts:

X ⊗ Y − Y ⊗ X − [X, Y ] and X ⊗ Y + Y ⊗ X − 2X } Y − 2λ〈X, Y 〉

and that we may define the algebra Aλ in two steps, firstly taking the quotient of the tensor algebra by the skew
generators. This gives U(g) and an image ideal Īλ so that Aλ = U(g)/ Īλ. What we have shown more precisely in
Sections 2–4 is the following:

Theorem 5.5. For the classical complex simple algebras

g = so(n, C), n ≥ 5, λ 6= −
n − 4

4(n − 1)(n − 2)

g = sp(2n, C), n ≥ 2, λ 6= −
1

16(n + 1)

g = sl(n, C), n ≥ 3, λ 6= −
1

8(n + 1)

the ideal Īλ coincides with U(g) if λ 6= 0 whilst Ī0 = U+(g) ⊂ U(g), the unique maximal ideal consisting of elements
without constant part.
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Proof. Theorems 2.1, 3.1 and 4.1 say that, in these circumstances, the ideal Iλ contains g and hence contains⊕
s≥1

⊗sg, whose image is U+(g) by definition. The conclusions are now immediate from (1.1). �

In all other cases the algebra Aλ is, in fact, infinite-dimensional. For the orthogonal algebras, for example, there are
linear differential operators

DX for all X ∈ }s so(m + 1, 1)

constructed in [3] that satisfy

DXDY = DX}Y +
1
2
D[X,Y ] −

m − 2
4m(m + 1)

D〈X,Y 〉, ∀X, Y ∈ so(m + 1, 1).

The corresponding holomorphic differential operators provide a realisation of Aλ for g = so(n, C) and λ =

−
(n−4)

4(n−1)(n−2)
. There are similar linear holomorphic differential operators for g = sl(n, C) constructed as follows.

Recall that in Section 4 we identified sl(n, C) with trace-free tensors Xa
b. More generally,

}s sl(n, C) =

X a
b

c
d
···

···
e

f︸ ︷︷ ︸
2s indices

s.t.
Xa

b
c

d
···

···
e

f = X (a
(b

c
d
···

···

e)
f )

Xa
b

c
d
···

···
e

f is totally trace-free.


and we define

DX ≡ (−1)s Xa
b

c
d
···

···
e

f Zb Zd
· · · Z f ∂s

∂ Za∂ Z c · · · ∂ Z e

as a holomorphic differential operator acting on Cn . For Xa
b, Y c

d ∈ sl(n, C),

DXDY −DYDX = (Y a
c X c

b − Xa
cY c

b)Zb ∂

∂ Za = −[X, Y ]
a

b Zb ∂

∂ Za = D[X,Y ]

and

DXDY +DYDX = 2X (a
(bY c)

d)Zb Zd ∂2

∂ Za∂ Z c + (Xa
cY c

b + Y a
c X c

b)Zb ∂

∂ Za .

However, if we write

X (a
(bY c)

d) = Cac
bd + D(a

(bδ
c)

d) + Eδ(a
(bδ

c)
d),

where

Da
b =

1
n + 2

(Xa
cY c

b + Y a
c X c

b) −
2

n(n + 2)
X c

dY d
cδ

a
b and E =

1
n(n + 1)

X c
dY d

c,

then Cac
bd and Da

b are trace-free. In particular, Cac
bd = (X } Y )ac

bd and

DXDY +DYDX = 2(Cac
bd + Dc

bδ
a

d + Eδc
bδ

a
d)Zb Zd ∂2

∂ Za∂ Z c + (Xa
cY c

b + Y a
c X c

b)Zb ∂

∂ Za

= 2DX}Y + 2Da
b Zb Z c ∂2

∂ Z c∂ Za + 2E Zb Z c ∂2

∂ Z c∂ Zb + (Xa
cY c

b + Y a
c X c

b)Zb ∂

∂ Za .

Now, let us restrict the action of these differential operators to germs φ of holomorphic functions defined near some
basepoint in Cn

\ {0} and ‘homogeneous of degree w’ in the sense that Za∂/∂ Zaφ = wφ. We find that

DXDY +DYDX = 2DX}Y +

(
2
w − 1
n + 2

+ 1
)

(Xa
cY c

b + Y a
c X c

b)Zb ∂

∂ Za

+ 2
(

1
n(n + 1)

−
2

n(n + 2)

)
w(w − 1)X c

dY d
c

= 2DX}Y +
2w + n
n + 2

(Xa
cY c

b + Y a
c X c

b)Zb ∂

∂ Za − 2
w(w − 1)

(n + 1)(n + 2)
X c

dY d
c.
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Assembling these computations we conclude that

DXDY = DX}Y +
2w + n
2(n + 2)

(Xa
cY c

b + Y a
c X c

b)Zb ∂

∂ Za +
1
2
D[X,Y ] −

w(w − 1)

2n(n + 1)(n + 2)
D〈X,Y 〉. (5.1)

In particular, for w = −n/2 we obtain

DXDY = DX}Y +
1
2
D[X,Y ] −

1
8(n + 1)

D〈X,Y 〉.

These operators provide a realisation of Aλ for g = sl(n, C) and λ = −
1

8(n+1)
and, in particular, show that this algebra

is infinite-dimensional. When w is an integer, the operators DX are better regarded as acting between homogeneous
line bundles on CPn−1 and it is interesting to note that Fox [5] has shown that (5.1) has a ‘curved analogue’ valid in
any projective differential geometry (whether or not w is integral).

If n = 2 we can proceed further because, in this case,

Xa
cY c

b + Y a
c X c

b = Xd
cY c

dδa
b =

1
4
〈X, Y 〉δa

b

whence

DXDY = DX}Y +
1
2
D[X,Y ] +

w(w + 2)

24
D〈X,Y 〉

for any w ∈ C. In particular, this shows that Aλ is infinite-dimensional for sl(2, C) no matter what λ is.
An alternative to these geometric realisations of Aλ is provided by the generalised Poincaré–Birkhoff–Witt

Theorem of Braverman and Gaitsgory [1], which enables one to identify the associated graded algebra gr(Aλ).
Specifically, if we let R ⊂ g ⊗ g be the g-invariant complement to g } g and J (R) be the two-sided ideal
in

⊗
g generated by R, then as a special case of [1] we obtain criteria under which the canonical surjection

p :
⊗

g/J (R) → gr(Aλ) of graded algebras is an isomorphism. These criteria are then verified by Braverman and
Joseph [2] in the case of critical λ. It follows from a result of Kostant (given in a lecture at MIT in 1980 and explained
with proof in [6, Chapter 3]) that the graded algebra

⊗
g/J (R) is simply the Cartan algebra }g =

⊕
∞

s=0 }s g for
any complex simple Lie algebra g. This is also proved by tensorial means in [3] for the orthogonal algebras, in [4] for
the special linear algebras, and the symplectic algebras are easily dealt with by a similar argument. In [4], however, it
was incorrectly asserted that p is always an isomorphism.
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[1] A. Braverman, D. Gaitsgory, Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type, J. Algebra 181 (1996) 315–328.
[2] A. Braverman, A. Joseph, The minimal realization from deformation theory, J. Algebra 205 (1998) 13–36.
[3] M.G. Eastwood, Higher symmetries of the Laplacian, Ann. Math. 161 (2005) 1645–1665.
[4] M.G. Eastwood, The Cartan product, Bull. Belg. Math. Soc. 11 (2005) 641–651.
[5] D.J.F. Fox, Projectively invariant star products, Int. Math. Res. Pap. 9 (2005) 461–510.
[6] D. Garfinkle, A new construction of the Joseph Ideal, Ph.D. Thesis, MIT, 1982. Available at: dspace.mit.edu.
[7] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Ecole Norm. Sup. 9 (1976) 1–30.
[8] R. Penrose, W. Rindler, Spinors and Space–Time, vol. 1, Cambridge University Press, 1984.

http://dspace.mit.edu

	Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras
	Introduction
	The orthogonal case
	The symplectic case
	The special linear case
	Remarks and conclusions
	Acknowledgments
	References


